Rapidly decaying Wigner functions are Schwartz functions

نویسندگان

چکیده

We show that if the Wigner function of a (possibly mixed) quantum state decays toward infinity faster than any polynomial in phase space variables x and p, then so do all its derivatives, i.e., it is Schwartz on space. This equivalent to condition Husimi function, operator sense Keyl et al. [Rev. Math. Phys. 28(03), 1630001 (2016)], and, case pure state, wavefunction configuration discuss interpretation this constraint functions provide explicit bounds seminorms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating All Wigner Functions

In the context of phase-space quantization, matrix elements and observables result from integration of c-number functions over phase space, with Wigner functions serving as the quasi-probability measure. The complete sets of Wigner functions necessary to expand all phase-space functions include off-diagonal Wigner functions, which may appear technically involved. Nevertheless, it is shown here ...

متن کامل

Wigner Functions with Boundaries

We consider a general Wigner function for a particle confined to a finite interval and subject to Dirichlet boundary conditions. We derive the boundary corrections to the ”star-genvalue” equation and to the time evolution equation. These corrections can be cast in the form of a boundary potential contributing to the total Hamiltonian. Moreover, in this context, it is the boundary potential that...

متن کامل

Entropy and wigner functions

The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to ...

متن کامل

Semiclassical propagation of Wigner functions.

We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2022

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0049581